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There is increasing evidence that a non-negligible number of TNea | Nest | 'Nes | 1867 | Nes) | "N 691 | 1N 70]
proteins may be natively unfolded, or that unfolded or partially 173 ceserer| e ol e
unfolded states for otherwise folded proteins may be relevant in EC.M,C.(,S coaic-6f| coaicss [ 3 ]
particular phases of cell cyclé.Therefore, characterization of these . i 8 °
proteins at the molecular levelnd subsequently of their interac- ERE A I RSl e Sl S
tions with other cellular or extracellular components becoming g 1 P |cesices|cesiged] cesices
an increasingly important issue. g Py

At variance with well-folded proteins, crystallization of unfolded & :ﬂz.ic'“ %
proteins is almost impossible, so NMR is the only technique to 35 17 l+ 9 0 @—
obtain detailed structural and dynamic information. In principle, Jorodicres [Cre3C64 c66lC'6s| 0 i i S B“&“C 6
NMR is equally well-suited for folded and unfolded proteins, the 17 _ ° C“ocy(q 00 .' s
latter often showing even sharper signals than the former. However, 1 e CrO9L 68 | e ®?
chemical shift dispersions in unfolded proteins are much smaller, .
causing problems in resonance assignnﬁe‘ht. o "™ Ve3 Ted  N65 V66  G67 Geé8 469

Indeed, for backbone nuclei, the chemical shift is roughly a sum 5(°C)/ppm

of an environment-independent contribution that is characteristic _ . . , , -

. . . . . . Figure 1. Representative slices ofC'—13C' planes at specific'>N
for each amino acid and sensitive to its neighbors in the sequence gsonances taken from the 16.4 T COCEIRAP spectrum of3C—15N-
and an environment-dependent contribution that is sensitive to thelabeledo-synuclein at 288 K. For each residue indicated at the bottom, the
secondary and tertiary structure elements that surround in spacehree correlations necessary for sequence-specific assignmenC(c
that particular nucleus/residue. The latter contribution is virtually Nit2: Ci-1=Ci—Nit1, Cita—C'i—Nis1) are shown (as well as the correla-

. . . . tions with the side chain of Asn 65).

absent in an unfolded protein. The environment-independent
contribution for ' and Ht protons is scarcely sensitive to the type ~ The 3D COCON-IPAP correlates the backbone nitrogen with
of amino acid to which the proton belongs, whereas it is still the attached carbonyl carbon and with the previous and following
strongly sensitive for heteronuclei, in the order € C' < N.7-9 carbonyl carbons in the sequence. The relevant correlations for
Thus, the chemical shift dispersion in the proton dimension is lost, Sequence-specific assignment can then be identified if*Cle-
and recording purely heteronuclear spectra becomes a strategy t6°C' planes at specifi¢®N resonances. The use of the IPAP method
minimize dimensionality and maximize dispersion. A complete set to remove the Csignal splitting due to the presence of-@C*
of experiments based qerotonless'3C direct detection has been  coupling™ permits also to obtain optimal resolution.
recently proposed for heteronuclear assignifetitwith the aim As shown in Figure 1, for each carbonyl carbon, it is indeed
of allowing the investigation of largé 6 or paramagnetic ~ Possible to identify three peaks: the “diagonal” peak<C'i—
proteinst’-2t We here develop a protonless strategy for the study Ni+1), the correlation with the previous {C,—C'i—Ni+4), and the
of unfolded proteins. It relies on combining the 3D CBCACON  correlation with the following (G+1—C'i—Ni+1) backbone carbonyl
IPAP experimerif for the identification of spin systems with a  carbons. The transfer of magnetization from a carbonyl carbon to
novel 3D COCON-IPAP experiment (Figure SI1 in the Supporting both the previous and the following provides redundant information,
Information) to obtain the sequence-specific assignment. With always welcome for assignment purposes. The ambiguity in the
respect to analogoutH-based experimentg225 the favorable direction of the sequential assignment is easily removed by using
chemical shift dispersion of carbon§fsis exploited in the direct ~ any of the other protonless experimeftsn this strategy, we use
acquisition dimension (see Figure SI2 for a comparison of signal the 3D CBCACON-IPAP experimerif (Figure 2) that allows us
dispersion for the two nuclei). The case study is the natively to link each backbone nitrogen with the attachédca@d with the

unfolded, 140 amino acid protei-synuclein2s-28 Its backbone intraresidue € (and @). In most cases, the amino acid type is
assignment was obtain®d® by using extended sets of proton-  identified from the information retained in the chemical shift values
based experiments, such as HNCA, HN(CO)CA, HNCO, HN(CA)- themselves? The completeC' and**N backbone assignment is
CO, CBCANH, and CBCA(CO)NH? The presentwo experiments reported in Figure 3 by labeling the correlations detected in the
represent an elegant strategy that provides aesthetically excellen2D CON-IPAP experiment? as well as in Table SI1 together with
spectra and leads to a sound assignment overcoming any overlaghe **C* and *3C/ assignment. Figure 3 also demonstrates the
problem, despite the intrinsic lower sensitivity 8 with respect excellent spreading achievable with a 2D experiment for an unfolded

to *H nuclei. The virtually complete assignment #6N, 13C', 13C, protein, provided the proton dimension is left out.
and3C# is reported as Supporting Information (Table SI1). Signal intensities in the COCONPAP experiment can be
— related to the3Jcc value, providing a source of structural
| Bruker BioSpin GmbH. information. In the present case, we noticed that one of the three
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pulse sequences written for the Bruker Avance series spectrometers

JI°Ne4] | ["N65I| (*Ne66] | ["N671] ["N68] | [*N69])| [N 70] - - - . . .
10 ] oo are available upon request. The signals assignment is deposited in
] B
] Ci-Cf BMRB (entry 6968).
30—: c-c o C’.-C" o Supporting Information Available: Description of the 3D
g * cr-c COCON-IPAP sequence; experimental NMR parameters used; com-
20 o b «® ‘- parison of signal dispersion féHN and*3C’; slices of selected planes
5 . o oo i o |ooo of the 3D COCON-IPAP experiment containing Pro signal¥\l, 13C',
.3 50_: | c-ct| ¢-c 13Ce, and13C# assignments oBC—15N a-synuclein. This material is
© A &6 a '(‘j"’c“ available free of charge via the Internet at http://pubs.acs.org.
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